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NUMERICAL ESTIMATES OF THE STRESS
INTENSITY FACTORS FOR PERIODIC CRACK
SYSTEMS IN THREE-DIMENSIONAL MEDIUM

J. D. SUZDALNITSKY
QAR, Quality Assurance and Reliability, Technion City, Haifa, 32000, Israel
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Abstract-A three-dimensional medium with a periodic or biperiodic system of circular cracks
under normal loading is considered. The displacements are represented in the form of surface
integrals and the problem is transformed to a singular integral equations. The stress intensity factors
are determined. © 1998 Elsevier Science Ltd.
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rectangular coordinates
polar coordinates
Poisson's ratio
shear modulus
break surfaces
dimension
radius of a crack
distance between layers
distance between centres of cracks
parameters connected with a,h,l
displacements
normal stress component
shear stress components
load
stress intensity factor
normalized stress intensity factor
components of Green's tensor
kernels in integral representations
solutions of integral equations

I. INTRODUCTION

The results ofanalysis ofa three-dimensional (3D) medium with a single circular or elliptical
crack are described in detail in (Liebowitz, 1968). There are some publications, referred to
by Qin et al. (1995), relating to the interaction between two parallel planar cracks in 3D
elasticity. The problem of crack interaction in 3D fracture mechanics has an important
applied value, but owing to the difficulties of mathematical and numerical evaluation,
progress is limited, Research of the stress state in an infinite elastic sheet with a curvilinear
crack or a crack system ca.n be realized in the following manner. Solution of the two­
dimensional (2D) biharmonic equation for the stress function presented in contour integral
form with density function and kernel, that is a fundamental solution of this equation. The
integral form obeys boundary conditions, and we obtain a singular integral equation for
the unknown density functions. For summing equations numerical analysis can be used.
This method, developed by Kurshin and Suzdalnitsky (1975, 1978), is extended here for
evaluation of the stress state of a 3D medium, weakened by a periodic or biperiodic system
of planar circular cracks.
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2. STATEMENT OF THE PROBLEM

The stress state of the body under load is described by the Lame equation. The general
solution of this equation can be represented as a surface integral (Banerjee and Butterfield,
1981)

(1)

where u(Mo) = {Ul> U2, U3} is the displacement vector at the point M o, ({J(M) = {({Jl> ({J2, ({J3}

is a vector of unknown functions to be determined from boundary conditions, [gjj] is
Green's tensor with components

3

r 2 = I(xj -02
,

i=l

(2)

Xl> X2, x3-rectangular coordinates (further Xl = X, X2 = y, X3 = z), e = 3 -4v, vis Poisson's
ratio and bij = 1 for i = j, bjj = °for i #- j.

Let the 3D infinite medium be weakened by a system of circular coplanar cracks and
loaded by a tension effort along the normal to the break surface

(3)

The break surface itsdf is not loaded

(4)

The origin of rectangular coordinates X, y is located at the centre of one of the cracks, plane
X, y coincides with its plane. In these coordinates the break surface w is defined as

Further we shall consider the following cases:

(1) k = 0, ±1, ± 2, ... ,m = n = 0. A periodic crack system with centres on the x-axis,
II = I is the period, a is the crack radius (Fig. Ia).

(2) k, m = 0, ± 1, ± 2, ... ,n = 0, I) = 12 = I. A biperiodic crack system forming a square
lattice (Fig. Ib).

(3) k, m = 0, ± 1, ±2, ... ,n = 0, ± 1, ±2, ... , N, II = 12 = l. A laminated biperiodic
crack system, h is the distance between layers, 2N+ 1 is the number of layers (Fig. Ic).

(4) k = m = 0, II = 0, ± 1, ±2, .... A periodic coplanar crack system with centres on
the z-axis (Fig. Id).

3. THE EQUATION FOR THE BIPERIODIC CRACK SYSTEM

We consider case II in detail. Solution (1) with kernel (2) must obey the boundary
conditions (3), (4) according to the relations of the theory of elasticity between stresses and
displacements

(Iii = ..1.divu+2IU3uJOX;, Tij = p.(ouJOXj +oujOX;) ,

2,u = E/(l+v)
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Fig. I. Crack systems: (I) periodic; (II) biperiodic; (III) laminated biperiodic; and (IV) periodic

coplanar.

In this way we obtain three two-dimensional singular integral equations. After con­
version to polar coordinates x = arcos8,y = arsin8,~ = apcos8,YJ = apsintandassump­
tion of CfJt = CfJ(p, t) cos t, CfJ2 = CfJ(p, t) sin t, CfJ3 = °two equations will be realized identically.
The third equation is

1
1 I21<+e 00 j) 1

pdp L aRCfJ(P,t)dt = -(1

o e k,m= - 00 P km
(5)

where

R~m = R6-2(ka] +mQ2)1+(e+m2W, R6 = r2+p2-2rpcos(8-t),

ql = rcos8-p(:Ost, q2 = rsin8-psint, (J = (Jo(l+v)IE(l-2v).

In the particular case with retention of one member of kernel (4) for k = m = 0, eqn
(5) has the solution

(1 p
CfJ(p, t) = CfJo(p) = 2" J 2 •

TC I-p
(6)

From eqn (6), it is easy to obtain well-known results for a single circular crack (Liebowitz,
1968).

Let us expand the kernel in eqn (5) in a series with respect to e, where e = all is a small
parameter
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" ~ _1__ ~~ f 2)+ IL.a R - a R +L. e G/r,e,p,,).
k.m P km P 0 J~ 1

(7)

G1 = (3a210 + aloo)(p - rcos(e-,), ani) = L k2im2)(k2+m2)-<n+05j .
k.m

The solution of eqn (5) we take into consideration in the form

co

CfJ(p, ,) = L P!CfJ/p, c).
)=0

(8)

After substituting eqns (7) and (8) in eqn (5) and equating coefficients with equal powers
of e, we obtain a set of integral equations

1
1 I2n a I
pdp -a RCfJo(p,r)dr = -(J,

o 0 P 0

(9)

l' pdp rn+B ~. ~o CfJ)(p, ,) dr = - l' pdp rHO Fj(r, e, p, ,) dr, j = 1,2, ... , (10)

where

)

F 1 = F2 = 0, F2)+ I = L GkCfJ2(J-kj,
k~l

J

F2J+2 = L GkCfJ2(J-k)+ 1·
k=1

In the computations, terms in series (7), (8) containing e in powers j ~ 7. It is easily
established, that ql = CfJ2 = CfJ4 = 0, CfJ/p, r) = CfJ/p) for j = 0, 3, 5, 6 and
CfJ7(P, r) = CfJ70(P) +CfJdp) cos 4r. A method for solving equation

I
a I2n a I

pCfJ(p)dp 8Rcos2mdr = -fer)
o 0 p 0

(II)

for n = °is well known. Let fer) = r2k
, k = 0, 1,2, ... (this kind of fer) only is of interest

here). Solution (II) has the form (Aleksandrov, 1967)

I p I { 2k k-I i p2i(a2_ p2 )k-2i}
CfJk(P) = rc2:jl_p2 2k+1 (I+bk)a -2kbk i~O Ck+1 2k-2i-1

bk = (2k)!!/(2k-I)!!, bo = 0, Ck = k!/i!(k-i)!. (12)

Function (6) is a particular case of (12) with k = 2.
In determining function CfJ7(P, c), it is needed to solve the integral equation (11) for

n = 2 (for a periodic crack system in case I this procedure should be executed for n = I
and n = 3 also). For the kernel equation (II) we resort to expansion in an infinite series
(Abramovitz and Stegun, 1964).

p<r

where Pk( cos r) are Lagrange polynomials.
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Equation (11) reduces to the form

where

v 00 + (p)±2m
Hn(r, p) = --0--2 L emn - ,

r-p m=O r
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(13)

Sign + and v = r, or - and v = p, are adopted for 0 < p < r or 0 < r < p, respectively.
Equation (13) can be ~,olved approximately with the aid of the Gauss-Tchebyshev

quadrature technique. We put

q>(p) = [p g(p), p = 0.5a(1-Yf), r = 0.5a(1-n
.,j~-p

Then, after discretization, eqn (13) is reduced to the set of linear algebraic equations

N

L Aijgj = f, i = 1, ... , N
j= ,

where

As a result we have solutions of eqn (10) for} = 3, 5,6, 70 by formula (12) and for} = 72
as a set of values gj,} = 1, ... , N.

Now the possibility exists of reconstructing the function q>(s, 't) in accordance with eqn
(8). The stress intensity factor can be determined by means of a limiting procedure

(14)

For the biperiodic crack system II

Features should be noted of problems for the other surfaces enumerated in Section 2. For
a periodic crack system (surface I) the sum with respect to k and m in eqn (5) is replaced
by that with respect to k only. Here Rk = Ro-2klq, +PI2, Ro, q\ the same as in eqn (5). In
expansion (7)
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G I = a,[p(1.5cos2r+0.5)-r(3cos8cosr)- cos(8-r))], '"a = 2 " k-(2n+l)n L, ,
n= 1

and Gir, 8, P, r) includes cos 2m for n = 1, ... ,j.
For this reason, ex.pressions

j-I

qJ2j+3(p,r) = L qJ2j+3,n(P) cos 2m, j= 1,2, ... ,
n=O

should be adopted for qJ2j+3(P, r). The expressions of the other functions qJj are the same
as before and further ~,olution of the problem I is analogous to case II.

For break surface IV

R~ = R~+(nh)2, G] = 2na](3y-1)p, G2 = 2na2(5y-1)(p3+2r2p),

y = 1j(1-2v), qJj = 0 forj = 1,2,4

and

(OJ(p,8) = pPj(p)jJ a2- p2 for j = 3,5,6, ... ,

where Pip) is a polynomial of even degree not more thanj-3, The solution of problem
III (a laminated biperbdic break surface) combines the features of the solutions of problems
I and IV, but the described method is applicable for a finite number N of layers. For N -+

00 the series for the coefficients rt.nmj in the expressions of the kernels Gij are divergent.

4. RESULTS

Results of calculations of K for e and an angle 8 between the chosen direction and the
x-axis for a periodic (break surface I) and biperiodic (break surface II) crack system are
given in Table I and in Fig. 2.

Figure 3 shows the dependence of the variable K on parameters e = a/I and 6 = a/h in
a middle layer for break surface III involving three (m = 3) or seven (m = 7) layers. Table
2 gives the relationshp between K and the parameter 6 for a periodic system of coplanar
cracks (break surface IV).

Here K is independent of 8 and can be approximated by the polynomial

(16)

The presented numerical results permit the following conclusions, For the periodic crack
system I on a line through the centres, K increases with e (relative measure of crack). At the
same time on a transverse line K increases at first, but subsequently, for e ;:: 0,3, it decreases
rapidly and becomes negative, This fact indicates closure of the break surface. The circular

Table I. Stress intensity factor for periodic and biperiodic break surfaces
I and II

Surface I Surface II

e
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0=0
1.002
1.011
1.044
1.179
1.718
3.496
8.396

n/4
1.002
1.012
1.037
1.040
0.874
0.120

- 2.158

n/2
1.002
1.0l3
1.020
0.830

-0.305
-4.455

-16.239

o
1.005
1.041
1.150
1.412
1.990
3.213
5.655

n/4
1.005
1.040
1.132
1.277
1.352
0.924

-1.079
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Fig. 2. Stress intensity factor. Periodic crack system: (I) - () = 0; (2) - () = nj4; (3) - () = n/2 ;
biperiodic crack system: (4) -() = 0; (5) -() = nj4.
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Fig. 3. Stress intensity fa(tor for laminated crack system: (a) 6 = 0.2, (I) -rn = 3, () = 0, (2)
-rn = 7, () = 0; (b) 6 = 0.5, (I) -rn = 3, () = 0, (2) -rn = 3, () = n/4, (3) -rn = 7, () = 0, (4)

-rn = 7, () = n/4.
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Table 2. Stress intensity factor for break surface IV

K

0.1
1.006

0.2
1.045

0.3
1.152

0.4
1.503

0.5
2.780

0.6
6.886

crack becomes a narrow elliptical crack stretched along the centre line. For the biperiodic
break surface II the behavior of K is similar to the previous case I, but increase of K on the
centre lines and decrea.sing on the bisectors is observed in this case to a lesser degree. For
the laminated medium with break surface III, the dependence of K on 8 for small e is also
weak. In view of this the results for e = 0.2 are shown in Table 2 for 8 = 0 only. For
increasing e this dependence is the same as in the earlier cases. Addition of layers leads to
decrease of K in the middle layer. Increase of the opening surface makes for reduction of
the stresses. Finally, K increases when the layers in break surfaces III and IV are brought
closer together.
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